694: Evaluation of a synergistic drug combination with ¹⁷⁷Lu-rhPSMA-10.1 for prostate cancer: Results of an *in vitro* screen and *in vivo* proof of concept study

<u>Caroline Foxton</u>¹, Bart Cornelissen², Edward O'Neill², Bradley Waldron¹, Freja Pretzmann³, Rikke Veggerby Grønlund³, Mathias Wikke Hallund³ and Daniel J Stevens¹

1. Blue Earth Therapeutics, Oxford, UK; 2. Department of Oncology, University of Oxford, OXford, UK; 3. Minerva Imaging, Ølstykke, Denmark.

BACKGROUND

- Novel radiohybrid (rh) prostate-specific membrane antigen (PSMA)-targeted radioligand therapeutic, ¹⁷⁷Lu-rhPSMA-10.1 (right panel), has shown promising preclinical efficacy, and favorable dosimetry and efficacy in preliminary studies in patients with prostate cancer.^{1–4}
- We performed a systematic *in vitro* screen to identify synergistic combinations of anticancer drugs with ¹⁷⁷Lu-rhPSMA-10.1 and subsequently conducted an *in vivo* efficacy study with one of the lead novel drug combinations.

METHODS

In vitro screen of >150 FDAapproved anticancer drugs

- Clonogenic survival assay of 22Rv1 cells comparing the test drug alone (5-fold serial dilutions with starting concentration 20 μM) vs test drug plus 15 MBq/mL ¹⁷⁷Lu-rhPSMA-10.1 (2h incubation) after 10 days
- N = 3 for each drug concentration

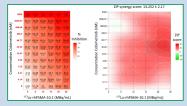
Focused screen of 5 lead candidates

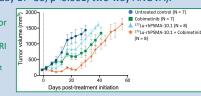
- Impact of ¹⁷⁷Lu-rhPSMA-10.1 (0–25 MBq/mL) on the drug IC₅₀ as determined above but with optimized starting concentrations and 3-fold serial dilutions
 N = 4 for each drug concentration
- Determination of synergy score using
- A) Zero interaction potency (ZIP) model which assesses drug interaction relationships by comparing the change in dose–response curves between individual drugs and their combinations⁵
- B) Multi-dimensional synergy of combinations (MuSyc) platform which determines whether the observed synergy is due to enhanced potency or enhanced efficacy of the single agents⁶
- Efficacy of lead combination in 22Rv1 tumorbearing NMRI nude mice
- 177Lu-rhPSMA-10.1 (single 30 MBq iv dose) and Cobimetinib (0.25 mg orally per day for 21 days) were administered alone and in combination
- Tumor volume was measured twice a week for 69 days
- N = 8 per group plus untreated controls

PART 1 - in vitro screen

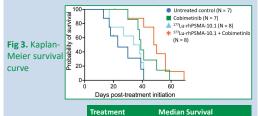
- All drugs in the initial screen that showed a $\log_{10} IC_{50}$ shift >0.5 when combined with 177 Lu-rhPSMA-10.1 were selected for the focused screen.
- Cobimetinib (right panel) was identified among these lead candidates with potential for synergistic combination with ¹⁷⁷Lu-rhPSMA-10.1.
- On the ZIP analyses, where a score >5% suggests high synergy, the Cobimetinib + ¹⁷⁷Lu-rhPSMA-10.1 combination was synergistic across a range of activity concentrations (Fig. 1, Table 1).
- Based on MuSyc analysis, where synergistic potency is indicated by Log α >0 (where α may correspond to either drug), the synergy appears to be due to enhanced potency of both Cobimetinib and ¹⁷⁷LurhPSMA-10.1 in the combination (Table 1).

Fig 1. ZIP synergy analysis of data (median % inhibition ± SD) and ZIP synergy scores, at different Cobimetinib concentrations and different doses of ¹⁷⁷Lu-rhPSMA-10.1




Table 1. ZIP and MuSyc scores

iable 1. Zir alia Masyc scores			
¹⁷⁷ Lu-rhPSMA-	ZIP Synergy	MuSyc Log α ¹⁷⁷ Lu-	MuSyc Log α
10.1 combination	Score,	rhPSMA-10.1	Drug
partner	% ± 95% CI	[95% CI]	[95% CI]
Cobimetinib	13.252	3.23	4.14
	± 2.17	[-4.8, 3.2]	[-0.5, 7.2]


PART 2 – in vivo proof of concept

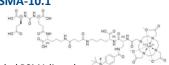
As shown in Fig. 2, the combination of ¹⁷⁷LurhPSMA-10.1 + Cobimetinib significantly suppressed tumor growth *in vivo vs* untreated controls (from day 13–30; p<0.01) and ¹⁷⁷Lu-rhPSMA-10.1 alone (from day 17–30; p<0.001; two-way ANOVA).

- Median survival was significantly longer in the combination group than untreated controls and ¹⁷⁷Lu-rhPSMA-10.1 alone (Fig. 3 and Table 2).
- No major compound related toxicity was noted based on changes in bodyweight (<10% reduction).

Table 2. Median survival

Untreated control 23 days

Cobimetinib 39 days


177Lu-rhPSMA-10.1 36 days

Cobimetinib + 49 days

177Lu-rhPSMA-10.1 p=0.001 vs untreated*
p=0.002 vs 177Lu-rhPSMA10.1 alone*

NOVEL SYNERGISTIC DRUG COMBINATION

¹⁷⁷Lu-rhPSMA-10.1

- 177Lu-labeled PSMA ligand
- In clinical trials as a radioligand therapy for patients with advanced prostate cancer (NCT05413850)

Cobimetinib

- MEK inhibitor
- Approved for use in patients with advanced or metastatic melanoma⁷

CONCLUSIONS

- This novel combination of Cobimetinib and ¹⁷⁷LurhPSMA-10.1 showed an enhanced therapeutic efficacy vs the single agents in 22Rv1 xenografts.
- The synergistic effect may be due to inhibition of the MEK-MAPK pathway by Cobimetinib during DNA damage response, resulting in radiosensitization of cancer cells to ¹⁷⁷Lu-rhPSMA-10.1.
- Moreover, combining with anticancer drugs such as MEK inhibitors may have an additive effect by targeting any PSMA-negative cells present in heterogenous tumors.
- The lack of overlapping monotherapy toxicity reported in the clinic further supports clinical investigation in men with prostate cancer.

References: 1. Foxton C et al., Plucif Med. 2015;13:504-13; 6. Meyer CT et al., Cell Syst., 2019;8(2):97-108; 7. FDA 2022: https://www.accessdata.fda.gov/fdrugsatfda_docs/label/2022/2061925005ib.pdf
he authors would like to tanh Dr V Fessel-a Vasileey of the recontribution to this study and plusified set of the Comput Struct Biotechnol J. 2015;13:504-13; 6. Meyer CT et al., Cell Syst., 2019;8(2):97-108; 7. FDA 2022: https://www.accessdata.fda.gov/fdrugsatfda_docs/label/2022/2061925005ib.pdf
he authors would like to tanh Dr V Fessel-a Vasileey of the recontribution to this study and plusified set of the Comput Struct Biotechnol J. 2015;13:504-13; 6. Meyer CT et al., Cell Syst., 2019;8(2):97-108; 7. FDA 2022: https://www.accessdata.fda.gov/fdrugsatfda_docs/label/2022/2061925005ib.pdf
he authors would like to tanh Dr V Fessel-a Vasileey of the recontribution to this study and plusified and plusified set of the Comput Struct Biotechnol J. 2015;13:504-13; 6. Meyer CT et al., Cell Syst., 2019;8(2):97-108; 7. FDA 2022: https://www.accessdata.fda.gov/fdrugsatfda_docs/label/2022/2061925005ib.pdf
he authors would like to tanh Dr V Fessel-a Vasileey of the Comput Struct Biotechnol J. 2015;13:504-13; 6. Meyer CT et al., Cell Syst., 2019;8(2):97-108; 7. FDA 2022: https://www.accessdata.fda.gov/fdrugsatfda_docs/label/2022/2061925005ib.pdf
he authors would be a variety of the comput Struct Biotechnol J. 2015;13:504-13; 6. Meyer CT et al., Cell Syst., 2019;8(2):97-108;7(3):2015