

Preclinical evaluation of ²²⁵Ac-rhPSMA-10.1, a novel radiohybrid PSMA compound for targeted alpha therapy of prostate cancer

Daniel J. Stevens¹, Bradley Waldron¹, Alexander Wurzer², Calogero D'Alessandria², Rikke Veggerby Grønlund³, Mathias Wikke Hallund³, David E. Gauden¹ and <u>Caroline Foxton⁴</u>

- 1. Blue Earth Therapeutics, Oxford, UK.
- 2. Department of Nuclear Medicine, Technical University of Munich, Germany.
- 3. Minerva Imaging, Ølstykke, Denmark.
- 4. Blue Earth Diagnostics, Oxford, UK.

Disclosures

- This study was supported by Blue Earth Therapeutics, Oxford, UK.
- Caroline Foxton, Bradley Waldron, David E. Gauden and Daniel J. Stevens are employees of Blue Earth Diagnostics / Blue Earth Therapeutics, Oxford, UK.

Introduction

- Radioligand therapy targeting prostate-specific membrane antigen (PSMA) is an effective therapy in men with metastatic castration-resistant prostate cancer¹
- To date, therapeutic PSMA ligands have typically been labelled with β-emitting ¹⁷⁷Lu, although α -emitting ²²⁵Ac-labelled ligands are in development

B-radiation

And beyond >2x Healthy Tissue

α -radiation

- e.g., ²²⁵Ac, ²¹²Pb
- Short range in human tissue
- May be appropriate in late-stage disease and/or for patients with micrometastases
- High linear energy transfer may overcome radiation resistance³

Radiohybrid prostate-specific membrane antigen (rhPSMA) ligands

Radiohybrid platform provides two binding sites for radionuclides, enabling theranostic potential¹

- Radiolabel with ¹⁸F for diagnostic imaging (e.g., flotufolastat ¹⁸F)^{2,3}
- Radiolabel with α or β -emitting radiometals (²²⁵Ac or ¹⁷⁷Lu) for therapeutic use:
 - Pre-clinical assessments of ¹⁷⁷Lu-rhPSMA-10.1 show it to have:
 - encouraging in vitro parameters (e.g., high PSMA affinity and internalization)
 - favourable biodistribution and greater tumour suppression vs ¹⁷⁷Lu-PSMA-I&T^{4,5}
 - ¹⁷⁷Lu-rhPSMA-10.1 is currently being investigated in a Phase 1/2 trial (NCT05413850)

Here, we evaluate ²²⁵Ac-rhPSMA-10.1 as a potential alpha-targeted therapy for prostate cancer

To characterize the potential of ²²⁵Ac-rhPSMA-10.1 as a therapy for prostate cancer by conducting a series of preclinical assessments:

- PSMA binding affinity
- Lipophilicity
- Cellular internalization
- Therapeutic response in a prostate cancer xenograft model (22Rv1)

Preclinical analyses

PSMA binding affinity (IC ₅₀)	 Competitive binding assay in LNCaP cells using rhPSMA-10.1 complexed with natural Lanthanum (^{nat}La, serving as a cold surrogate for ²²⁵Ac), or natural Lutetium (^{nat}Lu) N = 3 times per ligand
Lipophilicity	 The distribution coefficient was measured in n-octanol and phosphate-buffered saline at pH 7.4 (log D_{7.4}) using the shake-flask method N = 8 experiments
Cellular internalization	 % Internalization (normalized vs ¹⁷⁷Lu-PSMA-I&T as reference) was assessed by measuring (γ-counting) free, surface-bound, and internalized activity in LNCaP cells after 1-hour incubation N = 3 experiments
Therapeutic response in 22Rv1 tumour-bearing NMRI nu/nu mice	 Single IV administration of ²²⁵Ac-rhPSMA-10.1 (30 kBq) or ¹⁷⁷Lu-rhPSMA-10.1 (30 MBq).[†] Efficacy assessments comprised tumour volume and survival vs untreated controls ≤Day 49. Body weight was monitored for toxicity assessment N = 8 mice per group
+*	1000-fold lower dose for 225 Ac-rhPSMA-10.1 determined based on data derived with 225 Ac/ 177 Iu-PSMA-617.1

In vitro assessments

Substituting ²²⁵Ac for ¹⁷⁷Lu did not impact key in vitro parameters

Therapeutic efficacy – tumour growth in 22Rv1 xenografts

²²⁵Ac-rhPSMA-10.1 significantly reduced tumour growth compared with untreated controls. No significant differences were noted between ²²⁵Ac-rhPSMA-10.1 and ¹⁷⁷Lu-rhPSMA-10.1 groups.

Foxton et al. EANM Annual Meeting 2023. #OP-145

Therapeutic efficacy – survival in 22Rv1 xenografts

Ligand	Median survival (days)
Untreated	27.0
²²⁵ Ac-rhPSMA-10.1	43.5
¹⁷⁷ Lu-rhPSMA-10.1	42.0

• Treatments were well tolerated, with no significant effects on body weight observed

Bq) 🗧 177Lu-rhPSMA-10.1 (30 MBq)

²²⁵Ac-rhPSMA-10.1 significantly prolonged survival compared with untreated controls. No significant differences were noted between ²²⁵Ac-rhPSMA-10.1 and ¹⁷⁷Lu-rhPSMA-10.1 groups.

Conclusions

- These preclinical analyses demonstrate a promising therapeutic profile for ²²⁵AcrhPSMA-10.1, using a 1000-fold lower activity than ¹⁷⁷Lu-rhPSMA-10.1
- Similar in vitro characteristics and in vivo therapeutic efficacy results were observed for both ²²⁵Ac-rhPSMA-10.1 and ¹⁷⁷Lu-rhPSMA-10.1
- ²²⁵Ac-rhPSMA-10.1 represents a novel alpha particle-targeted therapy, with clinical trial application submission planned in 2023

Acknowledgements

Blue Earth Therapeutics, Oxford, UK

- Dan Stevens
- Brad Waldron
- David Gauden

Technical University of Munich, Germany

Blue Earth

- Alexander Wurzer
- Calogero D'Alessandria

Minerva Imaging, Ølstykke, Denmark

- Rikke Veggerby Grønlund
- Mathias Wikke Hallund
- The authors would like to thank Dr Vessela Vassileva for her contribution to this study and for her work on the abstract associated with this presentation.