

Preclinical evaluation of a novel radioligand therapy for patients with prostate cancer: biodistribution and efficacy of ¹⁷⁷Lu-rhPSMA-10.1 in comparison with ¹⁷⁷Lu-PSMA-I&T

Caroline Foxton¹, Rikke Veggerby Grønlund², Jaime (Jim) Simon³, Bart Cornelissen⁴, Edward O'Neill⁴, Romain Bejot¹, David E. Gauden¹ and Daniel J. Stevens¹

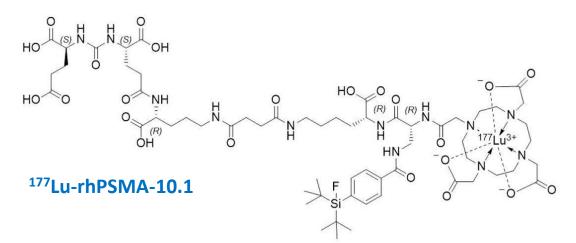
 Blue Earth Therapeutics, Oxford, UK; 2. Minerva Imaging, Ølstykke, Denmark;
IsoTherapeutics Group LLC, Angleton, TX, USA; 4. Department of Oncology, University of Oxford, Oxford, UK

Introduction

Challenge

- Radioligand therapy targeting prostate-specific membrane antigen (PSMA) has been shown to be an effective therapy in men with metastatic castration-resistant prostate cancer¹
- However, optimizing tumor uptake and accelerating renal clearance for this class of compounds could improve the therapeutic index, achieve better clinical outcomes, and satisfy ALARA requirements to most effectively manage patient's radiation exposure

Objectives


- Identify a PSMA-targeting compound for radioligand therapy with improved biodistribution to:
 - 1. Maximize tumor uptake
 - 2. Minimize kidney uptake and retention

Optimization of radiohybrid prostate-specific membrane antigen (rhPSMA) ligands for therapeutic use

rhPSMA platform: two binding sites for radionuclides enabling theranostic potential

- Radiolabel with ¹⁸F for diagnostic imaging (Phase 3 studies completed)
- Radiolabel with alpha- or beta-emitting radiometals for systemic radiation therapy
- Optimal properties differ for diagnostic imaging vs therapy
- Extensive Lead Optimization undertaken to select clinical candidate for therapeutic use

Optimization of rhPSMA molecules to improve biodistribution:

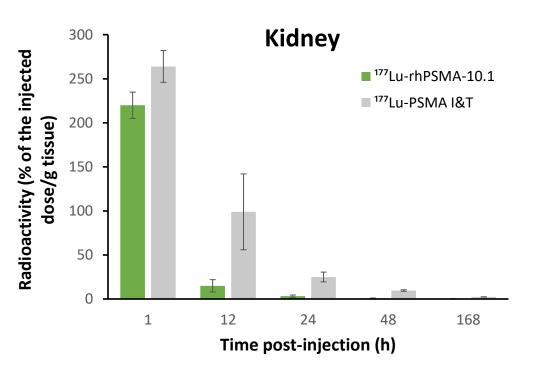
- Increase affinity
- Optimize albumin binding
- Optimize overall charge

Novel rhPSMA radiopharmaceutical, ¹⁷⁷Lu-rhPSMA-10.1, selected for development as a potential therapeutic agent for prostate cancer

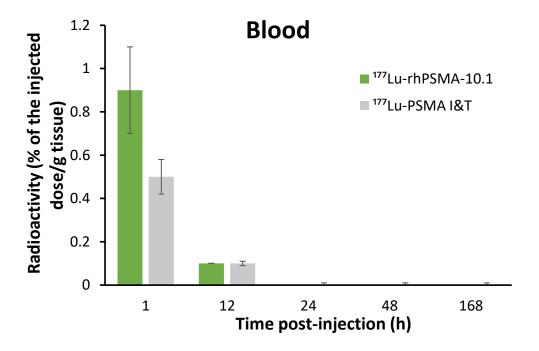
Preclinical analyses: biodistribution and therapeutic efficacy of ¹⁷⁷Lu-rhPSMA-10.1 vs ¹⁷⁷Lu-PSMA-I&T

1. Longitudinal biodistribution in non-tumor-bearing BALB/c mice

- 1 MBq of either radiopharmaceutical delivered via intravenous injection
- Tissues of interest were harvested for radioactivity measurement, 1, 12, 24, 48 and 168 h later
- N=4 mice per timepoint


2. Single-timepoint biodistribution to evaluate tumor:kidney uptake ratio in the 22Rv1 prostate cancer xenograft mouse model

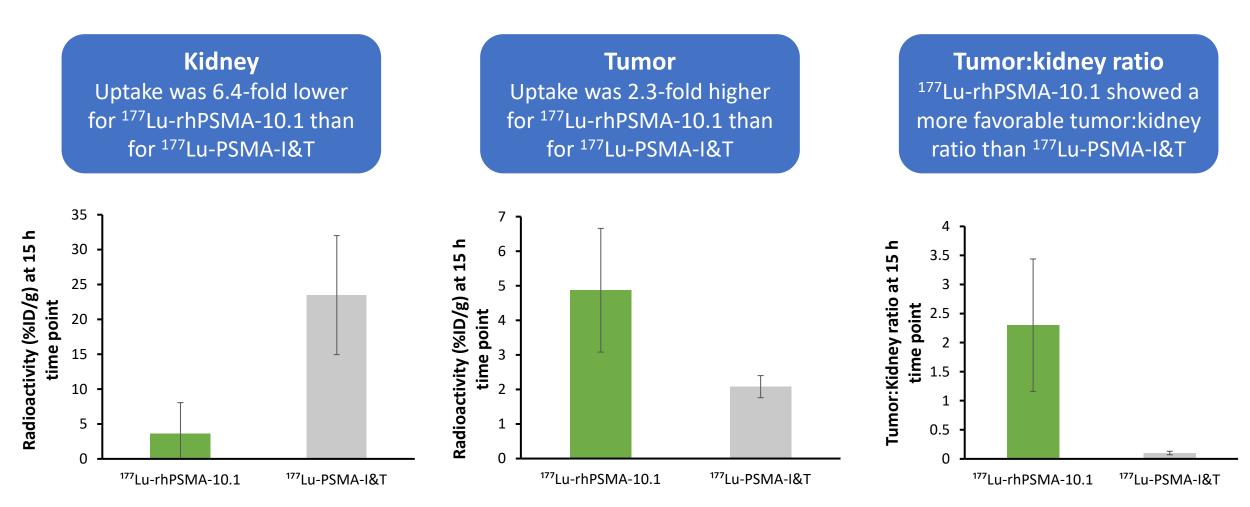
3. Efficacy in 22Rv1 tumorbearing NMRI nu/nu mice


- 1 MBq of either radiopharmaceutical delivered via intravenous injection
- Tissues of interest were harvested 15 h later
- 22Rv1 tumor-bearing SCID mice, 22Rv1 express relatively low PSMA levels
- N=4 for ¹⁷⁷Lu-rhPSMA-10.1, n=3 for ¹⁷⁷Lu-PSMA-I&T
- Single intravenous injection of vehicle, either of the non-radiolabeled PSMA compounds, or either of the ¹⁷⁷Lu-radiolabeled PSMA compounds (30 MBq)
- Tumor volume and body weight were measured twice a week for 35 d
- Blood was collected on study days -1, 14 and 28 for hematological assessment
- N=8 per group

Results: longitudinal biodistribution in nontumor-bearing BALB/c mice

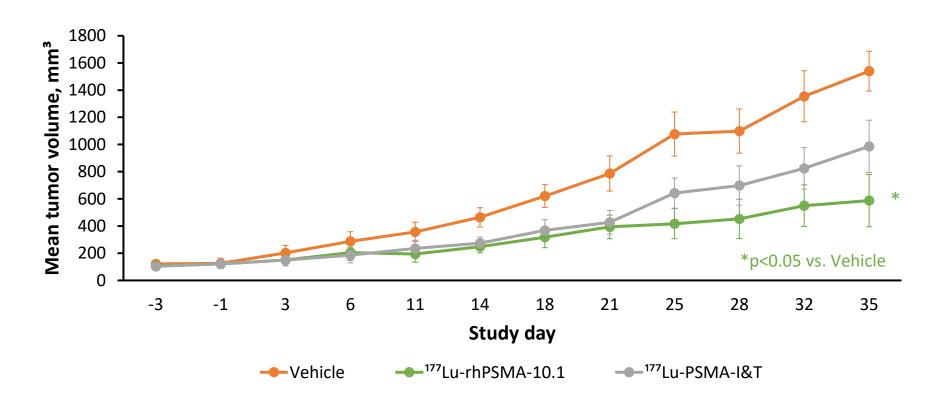
- Significant kidney uptake was evident for both compounds, but was cleared over the study period
- Kidney uptake and retention was markedly lower for ¹⁷⁷Lu-rhPSMA-10.1 than ¹⁷⁷Lu-PSMA-I&T at all timepoints
- Levels of ¹⁷⁷Lu-rhPSMA-10.1 were 6.5-fold lower at 12 h

 Both ¹⁷⁷Lu-rhPSMA-10.1 and ¹⁷⁷Lu-PSMA-I&T were rapidly cleared from the blood

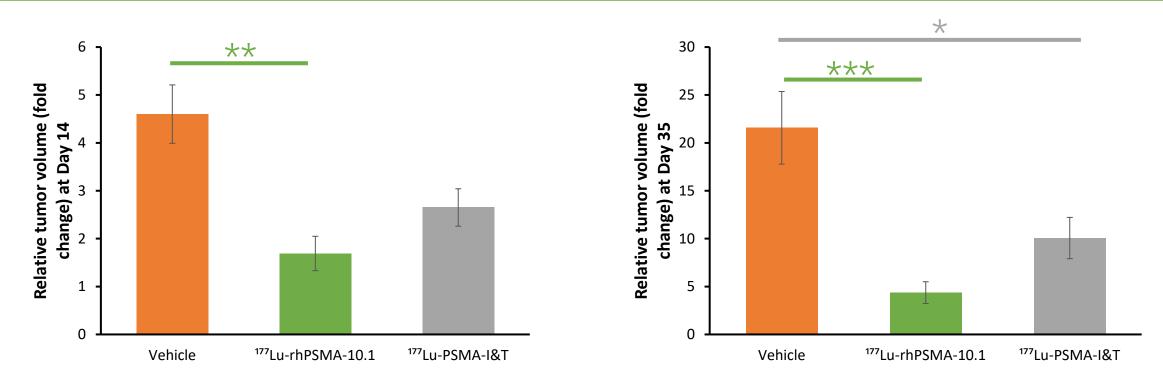

No other organ (including the brain) showed any significant uptake of ¹⁷⁷Lu-rhPSMA-10.1

Foxton et al. SNMMI Annual Meeting 2022. #2567

Results: single-timepoint biodistribution in 22Rv1 tumor-bearing SCID mice 15 h post-injection



Results: mean tumor volume in 22Rv1 tumorbearing NMRI nu/nu mice


At 35 days post-treatment, the mean tumor volume was significantly reduced by ¹⁷⁷Lu-rhPSMA-10.1 compared with vehicle control

Results: relative tumor volume in 22Rv1 tumorbearing NMRI nu/nu mice

- ¹⁷⁷Lu-rhPSMA-10.1 significantly suppressed tumor growth vs vehicle at Day 14 and at Day 35
- ¹⁷⁷Lu-PSMA-I&T reduced tumor growth vs vehicle at Day 35, but to a lesser extent than ¹⁷⁷Lu-rhPSMA-10.1
- No significant effects were noted on any hematological parameters or body weight

*p<0.05, **p<0.01, ***p<0.001 (one-way ANOVA, Dunnett's multiple comparisons test ^{\$}). Charts present mean ± standard error of the mean ^{\$} Seven groups included in the analysis, which included one additional ¹⁷⁷Lu-labeled test item and three non-radiolabeled precursor controls

Conclusions

- ¹⁷⁷Lu-rhPSMA-10.1 performed favorably in biodistribution studies compared with ¹⁷⁷Lu-PSMA-I&T, with a markedly improved tumor:kidney ratio
- ¹⁷⁷Lu-rhPSMA-10.1 significantly suppressed tumor growth relative to control, and to a greater extent than ¹⁷⁷Lu-PSMA-I&T
- The favorable renal clearance of ¹⁷⁷Lu-rhPSMA-10.1 has since been confirmed in a minipig model that may be more representative of human physiology
- ¹⁷⁷Lu-rhPSMA-10.1 is currently undergoing study in a Phase 1/2 clinical trial (BET-PSMA-121)

Acknowledgments

Blue Earth Therapeutics, Oxford, UK

- Dan Stevens
- Brad Waldron
- Romain Bejot
- David Gauden

Minerva Imaging, Ølstykke, Denmark

- Rikke Veggerby Grønlund
- Camilla Christensen
- Carsten Nielsen

IsoTherapeutics, TX, USA

- Jaime (Jim) Simon
- Keith Frank
- Jason Rogers
- Shannon Phillips
- Scot Ellebracht
- George St. George

University of Oxford, Oxford, UK

- Bart Cornelissen
- Edward O'Neill
- Tiffany Chan

